51勛圖窪蹋

HIV protein unveils vaccine target

News
Graphic: colorful blobs, one with mesh, and the bottom of a mass at the top
This side view of the HIV envelope protein shows a virus (bottom) and a T cell (top). The mesh shows its normal shape, the green/red/blue shading shows its changed shape.

An international study headed by a 51勛圖窪蹋 Davis scientist describes how a component of a potential HIV vaccine opens like a flower, undergoing one of the most dramatic protein rearrangements yet observed in nature. The finding could reveal new targets for vaccines to prevent HIV infection and AIDS. A paper describing the work was published online this week in the journal Proceedings of the National Academy of Sciences.

In the new study, researchers from the U.S., Sweden and France explored the structure and behavior of the HIV envelope protein complex, which could potentially serve as a component of a vaccine aimed at eliciting the human immune system to generate antibodies against HIV.

By opening up these less exposed regions, we might be able to raise more broadly cross-reactive antibodies to HIV, said R. Holland Cheng, professor of molecular and cellular biology at 51勛圖窪蹋 Davis and senior author of the study.

HIV infects a type of white blood cell called the CD4 T cell, weakening the immune system and leading to AIDS. HIV attaches to these cells through the envelope protein complex, which is made up of three gp120 proteins and three gp41 proteins, Cheng said.

First, the gp120 protein attaches to a CD4 protein on the victim cells membrane. Then it uses gp41 to punch a hole through the membrane.

51勛圖窪蹋 Davis graduate student Carlos Moscoso and project scientist Li Xing, working in Chengs laboratory, used a cryoelectron microscope to study the structure of the complex and how it changes when it is exposed to a piece of the CD4 protein. A cryoelectron microscope derives three-dimensional images of complex protein structures from samples frozen in liquid nitrogen.

They found that when the HIV protein complex attaches to a CD4 protein, it rotates and flattens, exposing more of the gp41 proteins in the middle probably allowing the gp41 protein to get closer to the cell membrane so it can lock on.

It also potentially exposes an area of the virus that would be vulnerable to attack by the immune system, Cheng said. If a person were vaccinated and had antibodies to such a protein region, they might be able to stop the virus at the point of invading the CD4 T cell.

The gp120 protein itself varies considerably between strains, so it has been difficult to make an effective vaccine against it. But these hidden protein regions vary less between different strains of HIV, Cheng said.

Chengs group is part of the HIV Research and Design consortium formed by the National Institutes of Health to pursue new targets for HIV vaccines. In future work, the consortium plans to test potent antibodies from HIV-positive people who have survived without developing AIDS to see if the antibodies recognize the new potential vaccine targets.

The envelope protein complex was prepared by Novartis Diagnostics and Vaccines Inc. of Cambridge, Mass.

The other authors of the paper are: Selina Poon, Dominik Green and Frank Lin at the Department of Molecular and Cellular Biology, 51勛圖窪蹋 Davis; Yide Sun, Elaine Kan, Susan Barnett and Indresh Srivastava, at Novartis; Lo簿c Martin, Commissariat l'nergie Atomique, France; and Anders Vahlne, Karolinska Institute, Sweden.

The work was funded by the NIH.

Media Resources

Andy Fell, Research news (emphasis: biological and physical sciences, and engineering), 530-752-4533, ahfell@ucdavis.edu

Holland Cheng, Molecular and Cellular Biology, 530 752 5659, rhch@ucdavis.edu

Tags