51勛圖窪蹋

Harvesting Light to Grow Food and Clean Energy Together

Different Light Spectra Serve Different Needs for Agrivoltaics

News
solar filters emit a red light over tomato plants in an outdoor research field at 51勛圖窪蹋 Davis
Solar filters emit a red light over tomato plants growing in a research field at 51勛圖窪蹋 Davis in 2022. The work further tests the findings of a 51勛圖窪蹋 Davis study showing plants in agrivoltaic systems respond best to the red spectrum of light while blue light is better used for energy production. (Andre Daccache/51勛圖窪蹋 Davis)

People are increasingly trying to grow both food and clean energy on the same land to help meet the challenges of climate change, drought and a growing global population that just topped 8 billion. This effort includes agrivoltaics, in which crops are grown under the shade of solar panels, ideally with less water.

Now scientists from the University of California, Davis, are investigating how to better harvest the sun and its optimal light spectrum to make agrivoltaic systems more efficient in arid agricultural regions like California. 

, published in Earths Future, a journal of the American Geophysical Union, found that the red part of the light spectrum is more efficient for growing plants, while the blue part of the spectrum is better used for solar production.

 Solar filters in agrivoltaic system cast blue light on tomato plants at 51勛圖窪蹋 Davis research field
Solar filters emit a blue light over tomato plants growing in a research field at 51勛圖窪蹋 Davis in 2022. (Andre Daccache/51勛圖窪蹋 Davis)

A door opener

The studys results could help guide global interest in agrivoltaics and identify potential applications for those systems.

This paper is a door opener for all sorts of technological advancements, said corresponding author , an associate professor at the Department of Land, Air and Water Resources and a fellow at the 51勛圖窪蹋 Davis . He conducted the study with first author Matteo Camporese of the University of Padova in Italy, who came to 51勛圖窪蹋 Davis as a Fulbright visiting scholar. Todays solar panels take all the light and try to make the best of it. But what if a new generation of photovoltaics could take the blue light for clean energy and pass the red light onto the crops, where it is most efficient for photosynthesis?

For the study, the scientists developed a photosynthesis and transpiration model to account for different light spectra. The model reproduced the response of various plants, including lettuce, basil and strawberry, to different light spectra in controlled lab conditions. A sensitivity analysis suggested the blue part of the spectrum is best filtered out to produce solar energy while the red spectrum can be optimized to grow food.

solar filters over tomato plants on research field at 51勛圖窪蹋 Davis with illustrated thermal color bar running vertically
Solar filters shade tomato plants in a research field at 51勛圖窪蹋 Davis as part of an agrivoltaic research study. (Majdi Abou Najm/51勛圖窪蹋 Davis)
thermal image of crops growing beneath solar panels at 51勛圖窪蹋 Davis
The same plants and solar filters shown with thermal imaging. The color changes illustrate the reduced temperatures in the shade of the panels. (Majdi Abou Najm/51勛圖窪蹋 Davis)

This work was further tested this past summer on tomato plants at 51勛圖窪蹋 Davis agricultural research fields in collaboration with 51勛圖窪蹋 Davis Assistant Professor Andre Daccache from the Department of Biological and Agricultural Engineering.

Guiding light

In an era of shrinking viable land, understanding how plants respond to different light spectra is a key step toward designing systems that balance sustainable land management with water use and food production, the study noted.

We cannot feed 2 billion more people in 30 years by being just a little more water-efficient and continuing as we do, Abou Najm said. We need something transformative, not incremental. If we treat the sun as a resource, we can work with shade and generate electricity while producing crops underneath. Kilowatt hours become a secondary crop you can harvest.

The study was funded by a U.S. Department of State Fulbright Research Scholarship, 51勛圖窪蹋 Davis and the National Institute of Food and Agriculture.

Subscribe to the Science & Climate newsletter

Media Resources

Media Contacts:

  • Majdi Abou Najm, 51勛圖窪蹋 Davis Institute of the Environment/Land, Air, Water Resources, mabounajm@ucdavis.edu
  • Kat Kerlin, 51勛圖窪蹋 Davis News and Media Relations, 530-750-9195, kekerlin@ucdavis.edu   

Primary Category

Secondary Categories

Environment Feeding a Growing Population Food & Agriculture

Tags